作者单位
摘要
1 浙江大学光电信息科学与工程学院,浙江 杭州 310027
2 浙江省医疗器械审评中心,浙江 杭州 310009
3 之江实验室类人感知研究中心,浙江 杭州 311100
采用蒙特卡罗模拟技术对血管组织在可见光波段的多光谱成像进行建模仿真,通过分析不同血氧饱和度下血液后向散射功率的绝对值、相对值、绝对差值和对比度,并考虑可能的干扰因素,优选出适合内窥环境下使用的450 nm、525 nm、630 nm和660 nm 4个成像波段。基于4个优选的成像波段展开了血氧饱和度检测的实验验证。在血管仿体组织上的实验结果表明,在95%的置信水平下,血氧饱和度的检测偏差为1.24%。研究结果验证了利用四波段进行内窥组织血氧饱和度检测的可行性。
医用光学 多光谱成像 内窥镜 血氧饱和度 蒙特卡罗仿真 
光学学报
2024, 44(2): 0217001
Author Affiliations
Abstract
1 Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 Hunan, People’s Republic of China
2 Xiangya Hospital, Central South University, Changsha, 410008 Hunan, People’s Republic of China
3 Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001 Henan, People’s Republic of China
4 College of Chemical Engineering, Xiangtan University, Xiangtan, 411105 Hunan, People’s Republic of China
Artificial cells are constructed from synthetic materials to imitate the biological functions of natural cells. By virtue of nanoengineering techniques, artificial cells with designed biomimetic functions provide alternatives to natural cells, showing vast potential for biomedical applications. Especially in cancer treatment, the deficiency of immunoactive macrophages results in tumor progression and immune resistance. To overcome the limitation, a BaSO4@ZIF-8/transferrin (TRF) nanomacrophage (NMΦ) is herein constructed as an alternative to immunoactive macrophages. Alike to natural immunoactive macrophages, NMΦ is stably retained in tumors through the specific affinity of TRF to tumor cells. Zn2+ as an “artificial cytokine” is then released from the ZIF-8 layer of NMΦ under tumor microenvironment. Similar as proinflammatory cytokines, Zn2+ can trigger cell anoikis to expose tumor antigens, which are selectively captured by the BaSO4 cavities. Therefore, the hierarchical nanostructure of NMΦs allows them to mediate immunogenic death of tumor cells and subsequent antigen capture for T cell activation to fabricate long-term antitumor immunity. As a proof-of-concept, the NMΦ mimics the biological functions of macrophage, including tumor residence, cytokine release, antigen capture and immune activation, which is hopeful to provide a paradigm for the design and biomedical applications of artificial cells.
Nano-Micro Letters
2023, 15(1): 216
张伟 1牛春阳 2游兴海 2袁波 1[ ... ]杨青 1,2
作者单位
摘要
1 浙江大学光电科学与工程学院, 浙江 杭州 310027
2 之江实验室超级感知研究中心, 浙江 杭州 311100

细胞内镜是一种具有超高放大倍率的内窥镜,能够在体内直接观察到染色的细胞核,对早期癌症的诊断具有重要意义,目前仅日本奥林巴斯公司拥有相应的技术。细胞内镜的核心是其头端部的光学成像系统,现有的细胞内镜成像系统在高倍率成像时视场范围较小,检查效率低。本文提出了一种高倍率大视场细胞内镜成像系统,采用6片球面系统实现了高性能低成本的大视场变焦内窥物镜,并基于此搭建了细胞内镜成像系统。实验结果表明:该系统的物方分辨率达到了181.0 lp/mm,放大倍数约为500倍,显微成像视场范围显著增大至1200 μm×670 μm,是现有细胞内镜成像系统的2倍以上。在此基础上,采用深度学习方法为系统增添了细胞核分割功能,分割准确度达到了96.58%,验证了所搭建的成像系统对细胞核形态细节的成像能力。

成像系统 内窥镜成像 光学设计 细胞内镜 细胞核分割 
光学学报
2021, 41(17): 1717001
Author Affiliations
Abstract
1 State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
2 College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
3 College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
4 Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
Electronic skin, a class of wearable electronic sensors that mimic the functionalities of human skin, has made remarkable success in applications including health monitoring, human-machine interaction and electronic-biological interfaces. While electronic skin continues to achieve higher sensitivity and faster response, its ultimate performance is fundamentally limited by the nature of low-frequency AC currents. Herein, highly sensitive skin-like wearable optical sensors are demonstrated by embedding glass micro/nanofibers (MNFs) in thin layers of polydimethylsiloxane (PDMS). Enabled by the transition from guided modes into radiation modes of the waveguiding MNFs upon external stimuli, the skin-like optical sensors show ultrahigh sensitivity (1870 kPa-1), low detection limit (7 mPa) and fast response (10 μs) for pressure sensing, significantly exceeding the performance metrics of state-of-the-art electronic skins. Electromagnetic interference (EMI)-free detection of high-frequency vibrations, wrist pulse and human voice are realized. Moreover, a five-sensor optical data glove and a 2×2-MNF tactile sensor are demonstrated. These initial results pave the way toward a new category of optical devices ranging from ultrasensitive wearable sensors to optical skins.
optical micro/nanofiber pressure sensor tactile sensor wearable sensor 
Opto-Electronic Advances
2020, 3(3): 03190022
作者单位
摘要
浙江大学光电科学与工程学院, 浙江杭州 310007
为了提高医用电子内窥镜所获图像的血管与组织的对比度, 针对内窥镜血管图像的特点, 提出了一种基于多颜色空间非线性对比度拉伸的血管增强处理方法。首先在 RGB颜色空间利用非线性映射函数对绿色(G)分量进行自适应对比度拉伸; 接着依据 G分量的拉伸结果, 相应地调整红色 (R)和蓝色(B)两个分量的灰度值; 然后将图像转换到 HSV颜色空间, 并对图像的饱和度(S)分量进行自适应对比度拉伸; 最后将图像转换回 RGB颜色空间, 最终达到血管增强的目的。在本文中, 利用所提出的算法对多幅电子内窥镜图像进行处理, 结果表明, 算法对于原始特征不明显的细小血管也具有较好的增强效果。通过与其它的增强方法相对比, 增强后图像的细节方差 (DV)显著大于其它方法。将算法嵌入到分辨率为 1280×800的内窥镜软件中, 其处理速度可达 26 f/s。
对比度 血管增强 颜色空间 电子内窥镜 contrast vessel enhancement color space electronic endoscope 
光电工程
2020, 47(1): 190268
作者单位
摘要
浙江大学现代光学仪器国家重点实验室, 浙江 杭州 310027
内窥镜图像质量在医生对早期病灶、异型增生复发的诊断中至关重要。因此本文根据血管对光谱的吸收特性, 提出了一种基于光谱变换的血管增强算法。首先, 该算法对图像RGB通道进行导向滤波, 将各通道分为亮度层和细节层; 接着, 将各通道的细节层进行基于信噪比的自适应增强, 并将亮度层进行拉伸, 使得GB通道的信息增强, R通道信息降低; 最后, 将各通道合并生成增强图像。本文应用该算法对大量内窥镜图像进行增强, 并且与Spectra B增强技术相比较。本文方法在DV-BV指标和韦伯对比度指标均优于Spectra B。
内窥镜 导向滤波 血管增强 光谱变换 endoscope guided filter vessel enhancement spectral enhancement 
光电工程
2019, 46(1): 180167
作者单位
摘要
浙江大学 光电信息工程学系,浙江 杭州310027
针对目前严峻的能源短缺问题,为有效节约室内照明消耗的电能,提出一种结合太阳能和LED技术的照明系统。当环境光能较强时,太阳能电池既向照明系统供电同时为内部储能蓄电池充电;当环境光照较弱时,由蓄电池为照明系统供电;系统兼具USB接口,通过该接口也能对系统内电池充电,以应对长时间光照差的气候。系统具有的自动调光功能,能保持室内工作面光照度稳定,为长久伏案的工作者提供最佳的照明环境。系统具有的自动调光功能和太阳能充电功能,从两个方面降低了电能的消耗。
照明系统 太阳能 自动调光 illumination system LED LED solar energy automatic illumination adjustment 
光学仪器
2011, 33(5): 65
作者单位
摘要
1 浙江大学现代光学仪器国家重点实验室, 浙江 杭州 310027
2 浙江大学 生物医学工程研究所, 浙江 杭州 310027
研制了一种用于体内成像诊断和光动力学治疗的荧光显微内窥术,可根据探测的荧光信号强度,采用反馈算法快速调节不同成像区域的激发光强度,获取高信噪比、大动态范围的荧光图像, 实现交互式荧光诊断与光动力学治疗分析。根据反馈的治疗效果,自适应地连续实时调整光剂量,获得最佳的光动力学治疗结果。激发光强度的动态调整由计算机控制数字微镜器件的开关状态及驻留时间来实现。荧光显微内窥镜的外径尺寸为8 mm,工作长度为250.3 mm,可装配在腹腔镜管鞘中,适用于体内病灶的显微成像诊断。实验结果表明,显微成像视场为600 μm,光学分辨率优于2.2 μm,图像动态范围可增强200倍以上,有效改善了荧光微弱区域和荧光饱和区域的图像细节和信噪比,提高了诊断准确性。此技术可进一步扩展为共焦三维成像,实现在体组织细胞学分析。
荧光显微内窥术 数字微镜器件 自适应成像 高动态范围 
光学学报
2011, 31(12): 1218001
Author Affiliations
Abstract
1 Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
2 School of Science, Xi'an Polytechnic University, Xi'an 710048, China
3 Department of Applied Mathematics and Applied Physics, Xi'an University of Posts and Telecommunications, Xi'an 710061, China
We propose a scheme for the enhancement of nonlinear susceptibility in a four-level tripod-type atomic system in the presence of a microwave field. With a microwave field, nonlinear susceptibility can be enhanced. Nonlinearity can also be ulteriorly enhanced by controlling the coupling field under the optimal intensity of the microwave field. The physical mechanism of the obtained giant nonlinear susceptibility is mainly based on interactions between microwave field and coupling fields. We present a physical understanding of our numerical results using a dressed-state approach and an analytical explanation.
三角架原子系统 电磁感应透明 Kerr非线性 缀饰态理论 190.3270 Kerr effect 270.1670 Coherent optical effects 270.6620 Strong-field processes 
Chinese Optics Letters
2010, 8(8): 795
作者单位
摘要
1 西安邮电学院电子与信息工程系,西安 710061
2 陕西师范大学物理学与信息技术学院,西安 710062
3 西安交通大学电子科学与技术学院,西安 710049
基于马尔可夫随机场模型的理论给出了差频瑞利增强极化拍(REPB)的解析解,并且研究了三种马尔可夫随机场模型下场关联效应和瑞利型共振增强效应对拍频信号的影响,指出了振幅涨落和位相涨落在时域和频域的不同作用.差频REPB信号展现出了时域对称特性,信号在三种马尔可夫随机场模型下的差别随着带宽的增大逐渐消失.
差频瑞利增强极化拍 场关联效应 位相涨落 振幅涨落 Difference-frequency Rayleigh-enhanced polarizatio 
光子学报
2006, 35(6): 0832

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!